
Letters
https://doi.org/10.1038/s41588-018-0183-z

1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. 2Cardiology Division of the Department of Medicine, Massachusetts 
General Hospital, Boston, MA, USA. 3Harvard Medical School, Boston, MA, USA. 4Cardiovascular Disease Initiative of the Broad Institute of Harvard and 
MIT, Cambridge, MA, USA. 5These authors contributed equally: Amit V. Khera, Mark Chaffin. *e-mail: skathiresan1@mgh.harvard.edu

A key public health need is to identify individuals at high risk 
for a given disease to enable enhanced screening or preven-
tive therapies. Because most common diseases have a genetic 
component, one important approach is to stratify individuals 
based on inherited DNA variation1. Proposed clinical applica-
tions have largely focused on finding carriers of rare monogenic  
mutations at several-fold increased risk. Although most dis-
ease risk is polygenic in nature2–5, it has not yet been possible 
to use polygenic predictors to identify individuals at risk com-
parable to monogenic mutations. Here, we develop and vali-
date genome-wide polygenic scores for five common diseases. 
The approach identifies 8.0, 6.1, 3.5, 3.2, and 1.5% of the pop-
ulation at greater than threefold increased risk for coronary 
artery disease, atrial fibrillation, type 2 diabetes, inflamma-
tory bowel disease, and breast cancer, respectively. For coro-
nary artery disease, this prevalence is 20-fold higher than 
the carrier frequency of rare monogenic mutations conferring 
comparable risk6. We propose that it is time to contemplate 
the inclusion of polygenic risk prediction in clinical care, and 
discuss relevant issues.

For various common diseases, genes have been identified in 
which rare mutations confer several-fold increased risk in het-
erozygous carriers. An important example is the presence of a 
familial hypercholesterolemia mutation in 0.4% of the popula-
tion, which confers an up to threefold increased risk for coronary 
artery disease (CAD)6. Aggressive treatment to lower circulating 
cholesterol levels among such carriers can significantly reduce 
risk7. Another example is the p.Glu508Lys missense mutation in 
HNF1A, with a carrier frequency of 0.1% of the general popula-
tion and 0.7% of Latinos8, which confers up to fivefold increased 
risk for type 2 diabetes9. Although the ascertainment of mono-
genic mutations can be highly relevant for carriers and their 
families, the vast majority of disease occurs in those without  
such mutations.

For most common diseases, polygenic inheritance, involving 
many common genetic variants of small effect, plays a greater role 
than rare monogenic mutations2–5. However, it has been unclear 
whether it is possible to create a genome-wide polygenic score 
(GPS) to identify individuals at clinically significantly increased 
risk—for example, comparable to levels conferred by rare mono-
genic mutations10,11.

Previous studies to create GPSs had only limited success, pro-
viding insufficient risk stratification for clinical utility (for example, 
identifying 20% of a population at 1.4-fold increased risk relative to 
the rest of the population)12. These initial efforts were hampered by 
three challenges: (1) the small size of initial genome-wide associa-
tion studies (GWASs), which affected the precision of the estimated 
impact of individual variants on disease risk; (2) limited computa-
tional methods for creating GPSs; and (3) a lack of large datasets 
needed to validate and test GPS.

Using much larger studies and improved algorithms, we set out 
to revisit the question of whether a GPS can identify subgroups of 
the population with risk approaching or exceeding that of a mono-
genic mutation. We studied five common diseases with major public 
health impact: CAD, atrial fibrillation, type 2 diabetes, inflamma-
tory bowel disease, and breast cancer.

For each of the diseases, we created several candidate GPSs based 
on summary statistics and imputation from recent large GWASs in 
participants of primarily European ancestry (Table 1). Specifically, 
we derived 24 predictors based on a pruning and thresholding 
method, and 7 additional predictors using the recently described 
LDPred algorithm13 (Methods, Fig. 1 and Supplementary Tables 1–6).  
These scores were validated and tested within the UK Biobank, 
which has aggregated genotype data and extensive phenotypic 
information on 409,258 participants of British ancestry (average 
age: 57 years; 55% female)14,15.

We used an initial validation dataset of the 120,280 participants 
in the UK Biobank phase 1 genotype data release to select the GPSs 
with the best performance, defined as the maximum area under the 
receiver-operator curve (AUC). We then assessed the performance 
in an independent testing dataset comprised of the 288,978 partici-
pants in the UK Biobank phase 2 genotype data release. For each 
disease, the discriminative capacity within the testing dataset was 
nearly identical to that observed in the validation dataset.

Taking CAD as an example, our polygenic predictors were derived 
from a GWAS involving 184,305 participants16 and evaluated based 
on their ability to detect the participants in the UK Biobank validation  
dataset diagnosed with CAD (Table 1). The predictors had AUCs 
ranging from 0.79–0.81 in the validation set, with the best predic-
tor (GPSCAD) involving 6,630,150 variants (Supplementary Table 1). 
This predictor performed equivalently well in the testing dataset, 
with an AUC of 0.81.
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We then investigated whether our polygenic predictor, GPSCAD, 
could identify individuals at similar risk to the threefold increased 
risk conferred by a familial hypercholesterolemia mutation6. Across 
the population, GPSCAD is normally distributed with the empirical  

risk of CAD rising sharply in the right tail of the distribution, from 
0.8% in the lowest percentile to 11.1% in the highest percentile  
(Fig. 2). The median GPSCAD percentile score was 69 for individuals 
with CAD versus 49 for individuals without CAD. By analogy to the 

Table 1 | GPS derivation and testing for five common, complex diseases

Disease Discovery 
GWAS (n)

Prevalence in validation 
dataset

Prevalence in testing 
dataset

Polymorphisms 
in GPS

Tuning 
parameter

AuC (95% 
Ci) in 
validation 
dataset

AuC 
(95% Ci) 
in testing 
dataset

CAD 60,801 
cases; 
123,504 
controls16

3,963/120,280 (3.4%) 8,676/288,978 (3.0%) 6,630,150 LDPred 
(ρ =  0.001)

0.81 (0.80–
0.81)

0.81 
(0.81–
0.81)

Atrial fibrillation 17,931 cases; 
115,142 
controls30

2,024/120,280 (1.7%) 4,576/288,978 (1.6%) 6,730,541 LDPred 
(ρ =  0.003)

0.77 (0.76–
0.78)

0.77 
(0.76–
0.77)

Type 2 diabetes 26,676 
cases; 
132,532 
controls31

2,785/120,280 (2.4%) 5,853/288,978 (2.0%) 6,917,436 LDPred 
(ρ =  0.01)

0.72 (0.72–
0.73)

0.73 
(0.72–
0.73)

Inflammatory 
bowel disease

12,882 
cases; 
21,770 
controls32

1,360/120,280 (1.1%) 3,102/288,978 (1.1%) 6,907,112 LDPred 
(ρ =  0.1)

0.63 (0.62–
0.65)

0.63 
(0.62–
0.64)

Breast cancer 122,977 
cases; 
105,974 
controls33

2,576/63,347 (4.1%) 6,586/157,895 (4.2%) 5,218 Pruning and 
thresholding 
(r/2 <  0.2; 
P < 5 ×  10−4)

0.68 (0.67–
0.69)

0.69 
(0.68–
0.69)

AUC was determined using a logistic regression model adjusted for age, sex, genotyping array, and the first four principal components of ancestry. The breast cancer analysis was restricted to female 
participants. For the LDPred algorithm, the tuning parameter ρ reflects the proportion of polymorphisms assumed to be causal for the disease. For the pruning and thresholding strategy, r2 reflects the 
degree of independence from other variants in the linkage disequilibrium reference panel, and P reflects the P value noted for a given variant in the discovery GWAS. CI, confidence interval.

Association statistics from previously
published genome-wide association study

Choose best polygenic score based on 
maximal AUC in UK Biobank 

phase 1 validation dataset (n = 120,280)

Assess association of best polygenic score 
with disease in UK Biobank phase 2 testing 

dataset (n = 288,978) 

Derive 31 candidate polygenic scores for each disease:
(1) Pruning and thresholding (24 scores)
(2) LDPred algorithm (7 scores)
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Fig. 1 | Study design and workflow. A GPS for each disease was derived by combining summary association statistics from a recent large GWAS and 
a linkage disequilibrium reference panel of 503 Europeans34. Then, 31 candidate GPSs were derived using two strategies: (1) ‘pruning and thresholding’ 
(that is, the aggregation of independent polymorphisms that exceeded a specified level of significance in the discovery GWAS); and (2) the LDPred 
computational algorithm13, a Bayesian approach to calculate a posterior mean effect for all variants based on a prior (effect size in the previous GWAS) 
and subsequent shrinkage based on linkage disequilibrium. The seven candidate LDPred scores vary with respect to the tuning parameter ρ (that is, the 
proportion of variants assumed to be causal), as previously recommended13. The optimal GPS for each disease was chosen based on the AUC in the 
UK Biobank phase 1 validation dataset (n =  120,280 Europeans) and subsequently calculated in an independent UK Biobank phase 2 testing dataset 
(n =  288,978 Europeans).
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traditional analytic strategy for monogenic mutations, we defined 
‘carriers’ as individuals with GPSCAD above a given threshold and 
‘non-carriers’ as all others.

We found that 8% of the population had inherited a genetic  
predisposition that conferred ≥  threefold increased risk for CAD 
(Table 2). Strikingly, the polygenic score identified 20-fold more 
people at comparable or greater risk than were found by familial 
hypercholesterolemia mutations in previous studies6,7. Moreover, 
2.3% of the population (‘carriers’) had inherited ≥  fourfold 
increased risk for CAD and 0.5% (‘carriers’) had inherited ≥  five-
fold increased risk. GPSCAD performed substantially better than 
two previously published polygenic scores for CAD that included 
50 and 49,310 variants, respectively (Supplementary Table 7 and 
Supplementary Fig. 1)17,18.

GPSCAD has the advantage that it can be assessed from the time 
of birth, well before the discriminative capacity emerges for the risk 
factors (for example, hypertension or type 2 diabetes) used in clini-
cal practice to predict CAD. Moreover, even for our middle-aged 
study population, practising clinicians could not identify the 8% of 
individuals at ≥  threefold risk based on GPSCAD using conventional 
risk factors in the absence of genotype information (Supplementary 
Table 8). For example, conventional risk factors such as hypercholes-
terolemia were present in 20% of those with ≥  threefold risk based 
on GPSCAD versus 13% of those in the remainder of the distribution. 
Hypertension was present in 32 versus 28%, and a family history 
of heart disease was present in 44 versus 35%, respectively. Making 
high GPSCAD individuals aware of their inherited susceptibility may 
facilitate intensive prevention efforts. For example, we previously 
showed that a high polygenic risk for CAD may be offset by one of 
two interventions: adherence to a healthy lifestyle or cholesterol-
lowering therapy with statin medications19–21.

Our results for CAD generalized to the four other diseases: 
risk increased sharply in the right tail of the GPS distribution 
(Fig. 3). For each disease, the shape of the observed risk gradi-
ent was consistent with predicted risk based only on the GPS 
(Supplementary Figs. 2 and 3).

Atrial fibrillation is an underdiagnosed and often asymptomatic 
disorder in which an irregular heart rhythm predisposes to blood 
clots and is a leading cause of ischemic stroke22. The polygenic  
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Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPSCAD in the UK Biobank testing dataset (n =  288,978). The x axis represents GPSCAD, with values 
scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and 
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. b, GPSCAD percentile among CAD cases versus controls in the UK Biobank testing dataset.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the 
percentile of the GPSCAD.

Table 2 | Proportion of the population at three-, four- and 
fivefold increased risk for each of the five common diseases

High GPS definition individuals in testing 
dataset (n)

% of individuals

Odds ratio ≥3.0

 CAD 23,119/288,978 8.0

 Atrial fibrillation 17,627/288,978 6.1

 Type 2 diabetes 10,099 288,978 3.5

 Inflammatory bowel 
disease

9,209 288,978 3.2

 Breast cancer 2,369/157,895 1.5

 Any of the five diseases 57,115/288,978 19.8

Odds ratio ≥4.0

 CAD 6,631/288,978 2.3

 Atrial fibrillation 4,335/288,978 1.5

 Type 2 diabetes 578/288,978 0.2

 Inflammatory bowel 
disease

2,297/288,978 0.8

 Breast cancer 474/157,895 0.3

 Any of the five diseases 14,029/288,978 4.9

Odds ratio ≥5.0

 CAD 1,443/288,978 0.5

 Atrial fibrillation 2,020 288,978 0.7

 Type 2 diabetes 144/288,978 0.05

 Inflammatory bowel 
disease

571/288,978 0.2

 Breast cancer 158/157,895 0.1

 Any of the five diseases 4,305/288,978 1.5

For each disease, progressively more extreme tails of the GPS distribution were compared with the 
remainder of the population in a logistic regression model with disease status as the outcome, and 
age, sex, the first four principal components of ancestry, and genotyping array as predictors. The 
breast cancer analysis was restricted to female participants.
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predictor identified 6.1% of the population at ≥  threefold risk and 
the top 1% had 4.63-fold risk (Tables 2 and 3). Screening for atrial 
fibrillation has become increasingly feasible owing to the devel-
opment of ‘wearable’ device technology; these efforts to increase 
detection may have maximal utility in those with high GPSAF.

Type 2 diabetes is a key driver of cardiovascular and renal dis-
ease, with rapidly increasing global prevalence23. The polygenic pre-
dictor identified 3.5% of the population at ≥  threefold risk and the 
top 1% had 3.30-fold risk (Tables 2 and 3). Both medications and an 
intensive lifestyle intervention have been proven to prevent progres-
sion to type 2 diabetes24, but widespread implementation has been 
limited by side effects and cost, respectively. Ascertainment of those 
with high GPST2D may provide an opportunity to target such inter-
ventions with increased precision.

Inflammatory bowel disease involves chronic intestinal inflam-
mation and often requires lifelong anti-inflammatory medications 
or surgery to remove afflicted segments of the intestines25. The 
polygenic predictor identified 3.2% of the population at ≥  threefold 
risk and the top 1% had 3.87-fold risk (Tables 2 and 3). Although 
no therapies to prevent inflammatory bowel disease are currently 
available, ascertainment of those with increased GPSIBD may  
enable enrichment of a clinical trial population to assess a novel  
preventive therapy.

Breast cancer is the leading cause of malignancy-related death in 
women. The polygenic predictor identified 1.5% of the population 
at ≥  threefold risk (Tables 2 and 3). Moreover, 0.1% of women had  

≥  fivefold risk of breast cancer, corresponding to a breast cancer 
prevalence of 19.0% in this group versus 4.2% in the remaining 99.9% 
of the distribution. The role of screening mammograms for asymp-
tomatic middle-aged women has remained controversial owing to 
a low incidence of breast cancer in this age group and a high false  
positive rate. Knowledge of GPSBC may inform clinical decision 
making about the appropriate age to recommend screening26.

These results show that, for a number of common diseases, 
polygenic risk scores can now identify a substantially larger frac-
tion of the population than is found by rare monogenic mutations, 
at comparable or greater disease risk. Our validation and testing 
were performed in the UK Biobank population. Individuals who 
volunteered for the UK Biobank tended to be more healthy than 
the general population27; although this non-random ascertain-
ment is likely to deflate disease prevalence, we expect the relative 
impact of genetic risk strata to be generalizable across study popu-
lations. Additional studies are warranted to develop polygenic risk 
scores for many other common diseases with large GWAS data 
and validate risk estimates within population biobanks and clini-
cal health systems.

Polygenic risk scores differ in important ways from the identifi-
cation of rare monogenic risk factors. Whereas identifying carriers 
of rare monogenic mutations requires sequencing of specific genes 
and careful interpretation of the functional effects of the mutations 
found, polygenic scores can be readily calculated for many dis-
eases simultaneously, based on data from a single genotyping array.  
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Fig. 3 | Risk gradient for disease according to the GPS percentile. 100 groups of the testing dataset were derived according to the percentile of the 
disease-specific GPS. a–d, Prevalence of disease displayed for the risk of atrial fibrillation (a), type 2 diabetes (b), inflammatory bowel disease (c), and 
breast cancer (d) according to the GPS percentile.
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In our testing dataset, 19.8% of participants were at ≥  threefold 
increased risk for at least 1 of the 5 diseases studied (Table 2).

The potential to identify individuals at significantly higher genetic 
risk, across a wide range of common diseases and at any age, poses a 
number of opportunities and challenges for clinical medicine.

Where effective prevention or early detection strategies are 
available, key issues will include the allocation of attention and 
resources across individuals with different levels of genetic risk 
and integration of genetic risk stratification with other risk factors, 
including rare monogenic mutations, and clinical, and environ-
mental factors. Where such strategies do not exist or are subopti-
mal, the identification of individuals at high risk should facilitate 
the design of efficient natural-history studies to discover early 
markers of disease onset and clinical trials to test prevention strate-
gies. In both cases, it is important to recognize that the risk associ-
ated with a high polygenic score may not reflect a single underlying 
mechanism, but rather the combined influence of multiple path-
ways28. Nonetheless, prevention and detection strategies may have 
utility regardless of the underlying mechanism, as is the case for 
statin therapy for CAD, blood-thinning medications to prevent 
stroke in those with atrial fibrillation, or intensified mammogra-
phy screening for breast cancer.

Risk communication will require serious consideration. While 
polygenic risk scores can be simultaneously calculated at birth  
for all common diseases, the usefulness of the knowledge and the 
potential harms to the individual may vary with the disease and  
stage of life—from juvenile diabetes to Alzheimer’s disease. Yet, it  
may not be feasible or appropriate to withhold information that 
can be readily calculated from genetic data. Moreover, it will be 
important to consider how to assess both absolute and relative risks 
and how to communicate these risks to best serve each patient;  
for example, to encourage the adoption of lifestyle modifications or 
disease screening.

Finally, we highlight a crucial equity issue. The polygenic risk 
scores described here were derived and tested in individuals of 
primarily European ancestry—the group in which most genetic 
studies have been undertaken to date. Because allele frequencies, 
linkage disequilibrium patterns, and effect sizes of common poly-
morphisms vary with ancestry, the specific GPS here will not have 
optimal predictive power for other ethnic groups29. It will be impor-
tant for the biomedical community to ensure that all ethnic groups 
have access to genetic risk prediction of comparable quality, which 
will require undertaking or expanding GWAS in non-European 
ethnic groups.

Table 3 | Prevalence and clinical impact of a high GPS

High GPS definition Reference group Odds ratio 95% Ci P value

CAD
 Top 20% of distribution Remaining 80% 2.55 2.43–2.67 < 1 ×  10–300

 Top 10% of distribution Remaining 90% 2.89 2.74–3.05 < 1 ×  10–300

 Top 5% of distribution Remaining 95% 3.34 3.12–3.58 6.5 ×  10–264

 Top 1% of distribution Remaining 99% 4.83 4.25–5.46 1.0 ×  10–132

 Top 0.5% of distribution Remaining 99.5% 5.17 4.34–6.12 7.9 ×  10–78

Atrial fibrillation
 Top 20% of distribution Remaining 80% 2.43 2.29–2.59 2.1 ×  10–177

 Top 10% of distribution Remaining 90% 2.74 2.55–2.94 7.0 ×  10–169

 Top 5% of distribution Remaining 95% 3.22 2.95–3.51 1.1 ×  10–152

 Top 1% of distribution Remaining 99% 4.63 3.96–5.39 2.9 ×  10–84

 Top 0.5% of distribution Remaining 99.5% 5.23 4.24–6.39 3.5 ×  10–56

Type 2 diabetes
 Top 20% of distribution Remaining 80% 2.33 2.20–2.46 3.1 ×  10–201

 Top 10% of distribution Remaining 90% 2.49 2.34–2.66 1.2 ×  10–167

 Top 5% of distribution Remaining 95% 2.75 2.53–2.98 1.7 ×  10–130

 Top 1% of distribution Remaining 99% 3.30 2.81–3.85 1.4 ×  10–49

 Top 0.5% of distribution Remaining 99.5% 3.48 2.79–4.29 4.3 ×  10–30

inflammatory bowel disease
 Top 20% of distribution Remaining 80% 2.19 2.03–2.36 7.7 ×  10–95

 Top 10% of distribution Remaining 90% 2.43 2.22–2.65 8.8 ×  10–88

 Top 5% of distribution Remaining 95% 2.66 2.38–2.96 3.0 ×  10–68

 Top 1% of distribution Remaining 99% 3.87 3.18–4.66 1.4 ×  10–43

 Top 0.5% of distribution Remaining 99.5% 4.81 3.74–6.08 9.0 ×  10–37

Breast cancer
 Top 20% of distribution Remaining 80% 2.07 1.97–2.19 3.4 ×  10–159

 Top 10% of distribution Remaining 90% 2.32 2.18–2.48 2.3 ×  10–148

 Top 5% of distribution Remaining 95% 2.55 2.35–2.76 2.1 ×  10–112

 Top 1% of distribution Remaining 99% 3.36 2.88–3.91 1.3 ×  10–54

 Top 0.5% of distribution Remaining 99.5% 3.83 3.11–4.68 8.2 ×  10–38

Odds ratios were calculated by comparing those with high GPS with the remainder of the population in a logistic regression model adjusted for age, sex, genotyping array, and the first four principal 
components of ancestry. The breast cancer analysis was restricted to female participants. CI, confidence interval.
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URLs. 1000 Genomes Phase 3, http://www.internationalgenome.
org/category/phase-3/; UK Biobank, https://www.ukbiobank.
ac.uk/; R statistical software, http://www.R-project.org/; PLINK 2.0, 
https://www.cog-genomics.org/plink/2.0/; Hail, https://github.com/
hail-is/hail.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0183-z.

Received: 15 February 2018; Accepted: 21 June 2018;  
Published: xx xx xxxx

References
 1. Green, E. D. & Guyer, M. S., National Human Genome Research Institute. 

Charting a course for genomic medicine from base pairs to bedside. Nature 
470, 204–213 (2011).

 2. Fisher, R. A. The correlation between relatives on the supposition of 
Mendelian inheritance. Proc. R. Soc. Edinb. 52, 99–433 (1918).

 3. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 
13, 135–145 (2012).

 4. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring 
the contribution of common variants. Proc. Natl Acad. Sci. USA 111, 
E5272–E5281 (2014).

 5. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 
41–47 (2016).

 6. Abul-Husn, N. S. et al. Genetic identification of familial hypercholesterolemia 
within a single U.S. health care system. Science 354, pii: aaf7000 (2016).

 7. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed 
and undertreated in the general population: guidance for clinicians to prevent 
coronary heart disease: consensus statement of the European Atherosclerosis 
Society. Eur. Heart J. 34, 3478–3490a (2013).

 8. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. 
Nature 536, 285–291 (2016).

 9. Estrada, K. et al. Association of a low-frequency variant in HNF1A with type 
2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014).

 10. Chatterjee, N. et al. Projecting the performance of risk prediction based on 
polygenic analyses of genome-wide association studies. Nat. Genet. 45, 
400–405 (2013).

 11. Zhang, Y. et al. Estimation of complex effect-size distributions using 
summary-level statistics from genome-wide association studies across 32 
complex traits and implications for the future. Preprint at https://www.
biorxiv.org/content/early/2017/08/11/175406 (2017).

 12. Ripatti, S. et al. A multilocus genetic risk score for coronary heart disease: 
case-control and prospective cohort analyses. Lancet 376, 1393–1400 (2010).

 13. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy 
of polygenic scores. Am. J. Hum. Genet. 97, 576–592 (2015).

 14. Sudlow, C. et al. UK Biobank: an open access resource for identifying the 
causes of a wide range of complex diseases of middle and old age. PLoS Med. 
12, e1001779 (2015).

 15. Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank 
participants. Preprint at https://www.biorxiv.org/content/
early/2017/07/20/166298 (2017).

 16. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide 
association meta-analysis of coronary artery disease. Nat. Genet. 47, 
1121–1130 (2015).

 17. Tada, H. et al. Risk prediction by genetic risk scores for coronary heart 
disease is independent of self-reported family history. Eur. Heart J. 37, 
561–567 (2016).

 18. Abraham, G. et al. Genomic prediction of coronary heart disease.  
Eur. Heart J. 37, 3267–3278 (2016).

 19. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary 
disease. N. Engl. J. Med. 375, 2349–2358 (2016).

 20. Mega, J. L. et al. Genetic risk, coronary heart disease events, and the clinical 
benefit of statin therapy: an analysis of primary and secondary prevention 
trials. Lancet 385, 2264–2271 (2015).

 21. Natarajan, P. et al. Polygenic risk score identifies subgroup with higher 
burden of atherosclerosis and greater relative benefit from statin therapy in 
the primary prevention setting. Circulation 135, 2091–2101 (2017).

 22. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of 
patients with atrial fibrillation: a report of the American College of 

Cardiology/American Heart Association Task Force on practice guidelines 
and the Heart Rhythm Society. Circulation 130, e199–e267 (2014).

 23. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. 
Global, regional, and national incidence, prevalence, and years lived  
with disability for 310 diseases and injuries, 1990–2015: a systematic  
analysis for the Global Burden of Disease Study 2015. Lancet 388,  
1545–1602 (2016).

 24. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with 
lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

 25. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 
2066–2078 (2009).

 26. Pharoah, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes,  
risk prediction, and targeted prevention of breast cancer. N. Engl. J. Med. 358, 
2796–2803 (2008).

 27. Fry, A. et al. Comparison of sociodemographic and health-related 
characteristics of UK Biobank participants with those of the general 
population. Am. J. Epidemiol. 186, 1026–1034 (2017).

 28. Khera, A. V. & Kathiresan, S. Is coronary atherosclerosis one disease or 
many? Setting realistic expectations for precision medicine. Circulation 135, 
1005–1007 (2017).

 29. Martin, A. R. et al. Human demographic history impacts genetic risk 
prediction across diverse populations. Am. J. Hum. Genet. 100,  
635–649 (2017).

 30. Christophersen, I. E. et al. Large-scale analyses of common and rare  
variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 49, 
946–952 (2017).

 31. Scott, R. A. et al. An expanded genome-wide association study of type 2 
diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

 32. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for 
inflammatory bowel disease and highlight shared genetic risk across 
populations. Nat. Genet. 47, 979–986 (2015).

 33. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk 
loci. Nature 551, 92–94 (2017).

 34. The 1000 Genomes Project Consortium. A global reference for human 
genetic variation. Nature 526, 68–74 (2015).

Acknowledgements
UK Biobank analyses were conducted via application 7089 using a protocol approved 
by the Partners HealthCare Institutional Review Board. The analysis was supported by 
a KL2/Catalyst Medical Research Investigator Training award from Harvard Catalyst 
funded by the National Institutes of Health (TR001100 to A.V.K.), a Junior Faculty 
Research Award from the National Lipid Association (to A.V.K.), the National Heart, 
Lung, and Blood Institute of the US National Institutes of Health under award numbers 
T32 HL007208 (to K.G.A.), K23HL114724 (to S.A.L.), R01HL139731 (to S.A.L.), 
RO1HL092577 (to P.T.E.), R01HL128914 (to P.T.E.), K24HL105780 (to P.T.E.), and RO1 
HL127564 (to S.K.), the National Human Genome Research Institute of the US National 
Institutes of Health under award number 5UM1HG008895 (to E.S.L. and S.K.), the Doris 
Duke Charitable Foundation under award number 2014105 (to S.A.L.), the Foundation 
Leducq under award number 14CVD01 (to P.T.E.), and the Ofer and Shelly Nemirovsky 
Research Scholar Award from Massachusetts General Hospital (to S.K.). The authors 
thank D. Altshuler (Vertex Pharmaceuticals, Boston, MA) for comments on an earlier 
version of this manuscript.

Author contributions
A.V.K., M.C., and S.K. conceived and designed the study. A.V.K., M.C., K.G.A., M.E.H., 
C.R., S.H.C., and S.A.L. acquired, analyzed, and interpreted the data. A.V.K., M.C., E.S.L., 
and S.K. drafted the manuscript. A.V.K., M.C., P.N., E.S.L., P.T.E., and S.K. critically 
revised the manuscript for important intellectual content.

Competing interests
A.V.K. and S.K. are listed as co-inventors on a patent application for the use of genetic 
risk scores to determine risk and guide therapy. S.K. and P.T.E. are supported by a 
grant from Bayer AG to the Broad Institute focused on the genetics and therapeutics of 
myocardial infarction and atrial fibrillation.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-018-0183-z.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to S.K.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

NATuRE GENETiCS | www.nature.com/naturegenetics

http://www.internationalgenome.org/category/phase-3/
http://www.internationalgenome.org/category/phase-3/
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://www.R-project.org/
https://www.cog-genomics.org/plink/2.0/
https://github.com/hail-is/hail
https://github.com/hail-is/hail
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1038/s41588-018-0183-z
https://www.biorxiv.org/content/early/2017/08/11/175406
https://www.biorxiv.org/content/early/2017/08/11/175406
https://www.biorxiv.org/content/early/2017/07/20/166298
https://www.biorxiv.org/content/early/2017/07/20/166298
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1038/s41588-018-0183-z
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


LettersNATure GeNeTics

Methods
Polygenic score derivation. Polygenic scores provide a quantitative metric of 
an individual’s inherited risk based on the cumulative impact of many common 
polymorphisms. Weights are generally assigned to each genetic variant according 
to the strength of their association with disease risk (effect estimate). Individuals 
are scored based on how many risk alleles they have for each variant (for example, 
zero, one, or two copies) included in the polygenic score.

For our score derivation, we used summary statistics from recent GWAS 
studies conducted primarily among participants of European ancestry for 5 
diseases16,30–33 and a linkage disequilibrium reference panel of 503 European 
samples from 1000 Genomes phase 3 version 5 (ref. 34). UK Biobank samples were 
not included in any of the five discovery GWAS studies. DNA polymorphisms with 
ambiguous strands (A/T or C/G) were removed from the score derivation. For each 
disease, we computed a set of candidate GPSs using the LDPred algorithm and 
pruning and threshold derivation strategies.

The LDPred computational algorithm was used to generate seven candidate 
GPSs for each disease13. This Bayesian approach calculates a posterior mean effect 
size for each variant based on a prior and subsequent shrinkage based on the 
extent to which this variant is correlated with similarly associated variants in the 
reference population. The underlying Gaussian distribution additionally considers 
the fraction of causal (for example, non-zero effect size) markers via a tuning 
parameter, ρ. Because ρ is unknown for any given disease, a range of ρ values (the 
fraction of causal variants) were used—1.0, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001.

A second approach—pruning and thresholding—was used to build an 
additional 24 candidate GPSs. Pruning and thresholding scores were built using 
a P value and linkage disequilibrium-driven clumping procedure in PLINK 
version 1.90b (--clump)35. In brief, the algorithm forms clumps around SNPs with 
association P values less than a provided threshold. Each clump contains all SNPs 
within 250 kilobases of the index SNP that are also in linkage disequilibrium with 
the index SNP as determined by a provided pairwise correlation (r2) threshold in 
the linkage disequilibrium reference. The algorithm iteratively cycles through all 
index SNPs, beginning with the smallest P value, only allowing each SNP to appear 
in one clump. The final output should contain the most significantly disease-
associated SNP for each linkage disequilibrium-based clump across the genome.  
A GPS was built containing the index SNPs of each clump with association 
estimate betas (log-odds) as weights. GPSs were created over a range of P value  
(1.0, 0.5, 0.05, 5 ×  10−4, 5 ×  10−6, and 5 ×  10−8) and r2 (0.2, 0.4, 0.6, and 0.8) 
thresholds, for a total of 24 pruning and thresholding-based candidate scores for 
each disease. The resulting GPS for a P value threshold of 5 ×  10−8 and an r2 of <  0.2 
was denoted the ‘GWAS significant variant’ derivation strategy.

Polygenic score calculation in the validation dataset. For each disease, the 31 
candidate GPSs were calculated in a validation dataset of 120,280 participants of 
European ancestry derived from the UK Biobank phase 1 release. The UK Biobank 
is a large prospective cohort study that enrolled individuals from across the 
United Kingdom, aged 40–69 years at the time of recruitment, starting in 200614. 
Individuals underwent a series of anthropometric measurements and surveys, 
including medical history review with a trained nurse.

Scores were generated by multiplying the genotype dosage of each risk allele 
for each variant by its respective weight, and then summing across all variants 
in the score using PLINK2 software35. Incorporating genotype dosages accounts 
for uncertainty in the genotype imputation. The vast majority of variants in the 
GPSs were available for scoring purposes in the validation dataset with sufficient 
imputation quality (INFO >  0.3) (Supplementary Tables 1–6).

For each of the five diseases, the score with the best discriminative capacity 
was determined based on the maximal AUC in a logistic regression model with the 
disease as the outcome and the disease-specific candidate GPS, age, sex, first four 
principal components of ancestry, and an indicator variable for genotyping array 
used (Supplementary Tables 1–6). AUC confidence intervals were calculated using 
the ‘pROC’ package within R.

Testing dataset. The testing dataset was comprised of 288,978 UK Biobank phase 2  
genotype data release participants distinct from those in the validation dataset 
described above. Individuals in the UK Biobank underwent genotyping with one 
of two closely related custom arrays (UK BiLEVE Axiom Array or UK Biobank 
Axiom Array) consisting of over 800,000 genetic markers scattered across the 
genome15. Additional genotypes were imputed centrally using the Haplotype 
Reference Consortium resource, the UK10K panel, and the 1000 Genomes panel. 
To analyze individuals with a relatively homogenous ancestry and owing to small 
percentages of non-British individuals, the present analysis was restricted to 
white British ancestry individuals. This subpopulation was constructed centrally 
using a combination of self-reported ancestry and genetically confirmed ancestry 
using principal components. Additional exclusion criteria included outliers for 

heterozygosity or genotype missing rates, discordant reported versus genotypic sex, 
putative sex chromosome aneuploidy, or withdrawal of informed consent, derived 
centrally as previously reported15.

For each of the five diseases, the proportion of variance explained 
was calculated for each disease using the Nagelkerke’s pseudo-R2 metric 
(Supplementary Table 9). The R2 was calculated for the full model inclusive of 
the GPS plus the covariates minus R2 for the covariates alone, thus yielding an 
estimate of the explained variance. Covariates in the model included age, gender, 
genotyping array, and the first four principal components of ancestry.

A sensitivity analysis was performed by removing one individual from each 
pair of related individuals (third-degree or closer; kinship coefficient >  0.0442), 
confirming similar results within this subpopulation comprised of 222,529 (77%) 
of the 288,978 testing dataset participants (Supplementary Table 10).

Diagnosis of prevalent disease was based on a composite of data from self-
report in an interview with a trained nurse, electronic health record information 
including inpatient International Classification of Diseases (ICD-10) diagnosis 
codes, and Office of Population Censuses and Surveys (OPCS-4) procedure codes.

CAD ascertainment was based on a composite of myocardial infarction or 
coronary revascularization. Myocardial infarction was based on self-report or 
hospital admission diagnosis, as performed centrally. This included individuals 
with ICD-9 codes of 410.X, 411.0, 412.X, or 429.79, or ICD-10 codes of I21.X, 
I22.X, I23.X, I24.1, or I25.2 in hospitalization records. Coronary revascularization 
was assessed based on an OPCS-4 coded procedure for coronary artery bypass 
grafting (K40.1–40.4, K41.1–41.4, or K45.1–45.5), or coronary angioplasty with or 
without stenting (K49.1–49.2, K49.8–49.9, K50.2, K75.1–75.4, or K75.8–75.9).

Atrial fibrillation ascertainment was based on self-report of atrial fibrillation, 
atrial flutter, or cardioversion in an interview with a trained nurse, an ICD-9 
code of 427.3 or ICD-10 code of I48.X in hospitalization records, or a history of 
a percutaneous ablation or cardioversion based on the OPCS-4 coded procedure 
(K57.1, K62.1, K62.2, K62.3, or K 62.4), as performed previously30.

Type 2 diabetes ascertainment was based on self-report in an interview  
with a trained nurse or an ICD-10 code of E11.X in hospitalization records. 
Inflammatory bowel disease ascertainment was based on report in an interview 
with a trained nurse, or an ICD-9 code of 555.X or ICD-10 code of K51.X in 
hospitalization records.

Breast cancer ascertainment was based on self-report in an interview 
with a trained nurse, ICD-9 codes (174 or 174.9) or ICD-10 codes (C50.X) in 
hospitalization records, or a breast cancer diagnosis reported to the national 
registry before the date of enrollment.

Statistical analysis within the testing dataset. For each disease, the GPS with 
the best discriminative capacity in the testing dataset was calculated in the 
testing dataset of 288,278 participants using genotyped and imputed variants and 
the Hail software package36. The proportion of the population and of diseased 
individuals with a given magnitude of increased risk was determined by comparing 
progressively more extreme tails of the distribution with the remainder of the 
population in a logistic regression model predicting disease status and adjusted 
for age, gender, four principal components of ancestry, and genotyping array. 
Individuals were next binned into 100 groupings according to the percentile of the 
GPS, and the unadjusted prevalence of disease within each bin was determined.  
We next compared the observed risk gradient across percentile bins with 
that which would be predicted by the GPS. For each individual, the predicted 
probability of disease was calculated using a logistic regression model with only 
the GPS as a predictor. The predicted prevalence of disease within each percentile 
bin of the GPS distribution was calculated as the average predicted probability 
of all individuals within that bin. The shape of the predicted risk gradient was 
consistent with the empirically observed risk gradient for each of the five diseases 
(Supplementary Figs. 2 and 3).

Statistical analyses were conducted using R version 3.4.3 software  
(The R Foundation).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. GPSs for each of the five diseases are available for research uses 
at http://www.broadcvdi.org/informational/data.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample based on the  UK Biobank cohort study. All eligible participants with genetic and 
phenotypic data available included in the present analyses.

2.   Data exclusions

Describe any data exclusions. Participants were excluded based on non-British ancestry, included outliers for 
heterozygosity or genotype missing rates, discordant reported versus genotypic sex, putative 
sex chromosome aneuploidy, or withdrawal of informed consent. These exclusions were 
prespecified prior to the analysis.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Associations with disease status confirmed in a validation and testing dataset within the UK 
Biobank cohort study of >400,000 participants.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Polygenic scores extracted blinded to phenotype status of participants.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Statistical analyses were conducted using R version 3.4.3 software (The R Foundation).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

UK Biobank dataset included 409,258 participants of British ancestry (average age 57 years; 
55% female). Disease specific phenotypes are included in Table 1.
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